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1. Introduction

Cloud computing is the ongoing revolution in information and
communication technology (ICT) that uses virtualization technol-
ogy to provide a powerful and flexible computing environment. In
a Gartner report published in January 2013, the growth of public
cloud services will make it a $155 billion market and by the end of
2016, it is expected to grow to $ 210 billion. Although cloud
computing makes the computing reliable, dynamic, fast and easy,
it is still facing numerous challenges because of its large-scale and
complex architecture. Considering the scale and complexity of
cloud data centers, reliability and energy efficiency are two key
challenges that need careful attention and investigation. Reliability
of cloud computing systems (CCS) can be defined in the context of
security or in the context of resource and service failures. Due to the
complexity of the cloud architecture, failures are inevitable. It has
been shown that a system with 100,000 processors experiences a
failure every couple of minutes (Engelmann and Geist, 2005). In
cloud computing, failures could occur due to multiple reasons such
as hardware failure, software failure, etc. (Fig. 3). A failure in the
services of a cloud costs significantly for both providers and cus-
tomers. In a survey of 63 Data Centers done by P. Institute (2016)
in 2016, it has been reported that the average down-time cost of
each data center rose to $740,357 from $ 500,000 in 2010 (38%
increase). Every hour, the business sector is expected to lose
around $108,000 and according to the Information week, each year
IT outages result in the revenue loss of more than $ 26.5 billion.!
Provisioning of cloud resources accurately according to the de-
mand of the applications plays a crucial role to make the CCS re-
liable and energy efficient. In cloud computing, it is hard to predict
the requirement of resources accurately before or during submis-
sion of an application or task. Sometimes the provisioned re-
sources remain underutilized or become over utilized. The average
utilization of resources in cloud based data centers is only between
6% and 12%.% In case of underutilized resources, task or virtual
machine consolidation is performed by migrating the running
virtual machines to other physical resources in order to put the
underutilized resources on sleep mode or to turn them off so as to
reduce the energy consumption or other running costs (Clark et al.,
2005). In the case of overutilization, the running tasks are mi-
grated to other resources to keep the load of over-utilized re-
sources below to a specific threshold to immunise them from
failures or crashes.

On the other hand, the energy requirement to operate the
cloud infrastructure is also increasing in proportion to the opera-
tional costs. Approximately 45% of the total operational expenses
of IBM data centers goes in electricity bills (Sams, 2011). According

1 http://www.evolven.com/blog/downtime-outages-and-failures-under
standing-their-true-costs.html

2 http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-
amounts-of-energy-belying-industry-image.html

to the Gartner, the electricity consumption by cloud based data
centers will increase to 1012.02 Billion kWh by 2020. In 2013, data
centers alone in U.S. consumed 91 billion kilowatt-hours, which is
enough to power all the households of New York City twice over
and if this trend will continue then the consumption will reach
140 billion kWh by 2020, a 35% increase.® The energy that the U.S.
based data centers are consuming is equal to the electricity pro-
duced by 34 power plants each of 500 megawatts capacity and if
this can't be reduced then 17 new power plants will need to be
established by 2020 to power the data centers.” The electricity or
energy consumption in cloud infrastructures is very inefficient and
there are several types of wastes at different levels such as infra-
structure level or system level (Nguyen and Shi, 2010). At the in-
frastructure level, half of the energy provided to a data center is
consumed by the cooling infrastructure and at the system level,
50% of the energy is consumed when systems are in idle state.
These types of waste cause financial loss to both providers and
users.

Cloud computing infrastructure is a major contributor to the
carbon content of the environment. Along with many contributors
of carbon emissions in the environment, the contribution of IT
infrastructure is equal to the aviation industry. U.S. based data
centers emit 100 million metric tonne of carbon content each year
and will increase to 1034 metric tonne by 2020 (Cook and Horn,
2011). As the energy consumption, heat release and carbon foot-
print from large computing infrastructures has increased, re-
searchers are under great pressure to find new ways of decreasing
energy consumption. In the last few decades, the primary focus of
researchers and designers was on optimizing the performance of
the system in terms of speed, space and efficiency. However,
concerns about the energy consumption and carbon footprint in-
tensified recently. In January 2015, Amazon has announced the
construction of 150 MW wind farm which will produce approxi-
mately 500,000 MWh of wind power.” The operations of plant are
expecting to start in December 2016. The energy generated by the
wind farm will be used to power the current and future cloud
based AWS (Amazon Web Services) data centers. Microsoft had
also made a carbon neutral commitment in 2012 by promising to
achieve zero emission of carbon content by their data centers,
software development labs etc.° Google, IBM and other cloud
vendors are also working to make the cloud services and cloud
based data centers energy efficient and eco-friendly.

All the above facts and figures of failure and energy con-
sumption lead to the requirement of management of cloud re-
sources in a fault-tolerant and energy-efficient way. In response to
this, various researchers worldwide have proposed many

3 http://[www.vox.com/2014/12/14/7387945/sony-hack-explained

4 http://www.computerworld.com/article/2598562/data-center/data-centers-
are-the-new-polluters.html

5 http://aws.amazon.com/about-aws/sustainable-energy

5 http://blogs.msdn.com/b/microsoft-green/archive/2012/05/08/going-carbon-
neutral-and-putting-an-internal-price-on-carbon.aspx
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architectures, algorithms and policies to make the cloud comput-
ing environment reliable and energy efficient. However, there is
very limited research on the trade-off between reliability and
energy efficiency in CCS (Section 6). Considering both parameters
at the same time would open new opportunities and challenges in
the area of resource management and resource provisioning in
cloud systems. This paper gives a comprehensive survey of the
research done in the field of reliability and energy efficiency fol-
lowed by an analysis of the trade-off between these two metrics in
CCs.

The rest of this paper is organized as follows: Background of
cloud computing and virtualization has been explained in Section
2. In Section 3, we introduce the causes of the failures in parallel
and distributed computing environments like CCS. Section 4
highlights the research efforts done in the field of reliability and
failure management. In Section 5, we present the survey of the
research done to make the CCS energy efficient. Finally Section 6
analyse the trade-off between the reliability and energy efficiency
followed by the various challenges for determining the suitable
equilibrium between them. A taxonomy corresponding to each
section has been developed.

2. Background

Cloud computing is a simple concept that has emerged from
heterogeneous distributed computing, grid computing, utility
computing and autonomic computing. National Institute of Stan-
dards and Technology (NIST) has given a very comprehensive and
widely accepted definition of cloud computing systems. According
to NIST (Mell and Grance, 2011).

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

In cloud computing paradigm, end users avail computing as a
service or utility from the remote infrastructure just like water,
electricity, telephone etc. and pays for the usage. Users and busi-
nesses are able to access the computing services according to their
requirements with minimum intervention such that without
knowing where the services are coming from and how they are
getting delivered. For keeping the scope of this survey limited to
reliability and energy efficiency in cloud computing, only the term
virtualization from cloud computing perspective has been ex-
plained briefly because of its intensive use in further sections. A
thorough review about the history and trends in cloud computing
can be seen in Buyya et al. (2009), Shawish and Salama (2014) and
Jula et al. (2014).

Virtualization is the engine of cloud computing paradigm.
Virtualization allows the running of multiple virtual machines (a
software implementation of a computing node) on a single node
simultaneously with different software stacks or configurations
such as operating systems and application softwares. Generally, a
computing node on which virtual machines (VMs) are running is
termed as host machine and the running virtual machine is
termed as a guest machine. The number of running VMs on a host
depends upon the hardware configuration of the host and the
configuration of VMs. A virtual layer called virtual machine
monitor (VMM) lies in the middle of hardware and running VMs
which ensures the isolation of the running VMs from each other
and takes other managerial decisions such as resource scaling,
resilience, fault tolerance, power management etc. With the great
adoption of cloud computing technology, businesses need to shift

Physical Virtualized Physical Virtualized
Se_ryer Server Server Server
- l ’/7‘,‘ P 1 ,/*'-l
L ‘I Ll/ {T
x
Snapshot —
Duration — Online Snapshot
— Offline Duration = Downtime

Uncopied [
files
>

Hot Virtualization Cold Virtualization

Fig. 1. Virtualization/cloning methods.

their IT operations which were initially running on in-house non-
virtualized facility to virtualized environment. This can be done in
two ways (Fig. 1): hot virtualization (hot cloning) and cold vir-
tualization (cold cloning) (Portnoy, 2012).

In hot virtualization or hot cloning, the physical machine re-
mains online or running while taking snapshot (creating disk
image). Once the snapshot has been taken, the image gets copied
on a virtualized machine or server. The benefit of hot virtualization
is that we can keep the servers running all the time during the
creation of image rather than taking them offline. In this way, the
down time can be avoided and loss of business can be prevented.
However, while creating the image some of the opened files may
be left uncopied, which creates inconsistency between images. The
alternate of hot virtualization is cold virtualization, in which the
system goes offline and the disk image gets created. In cold vir-
tualization, inconsistency can be avoided, however, the systems
need to go offline, which cause loss to businesses (Subbiah, 2012).
Although hot virtualization has been preferred over the cold vir-
tualization because of no downtime, the choice matters on the
requirements of the organization. In virtualization, the running
VMs can be migrated from one server to another targeting dif-
ferent objectives such as fault tolerance, energy efficiency, opera-
tional costs, security, environment etc. Uses of VM migration to
increase the reliability and to decrease the energy consumption of
cloud computing systems have been discussed in Sections 4 and 5,
respectively.

3. Failures in cloud and distributed computing environments

In this section, we review the classification of failures in cloud
and distributed computing systems. The failure correlations as
well as causes for failures are also discussed. According to Javadi
et al. (2013).

A Failure is defined as an event in which the system fails to operate
according to its specifications. A system failure occurs, when a
system deviates from fulfilling its normal system function for
which it was aimed at.

According to Google (Barroso et al., 2013), the cost for each
repair of failure includes $100 for technician's time and 10% of the
total cost of server ($200), which reaches to $ 300 per repair.
Therefore the cost of repairing the hardware exceeds its buying
cost after only 7 repairs. Sound knowledge of the type of failure
and causes of failure will help computer scientists and computer
engineers to design more scalable algorithms and to deploy in-
frastructure in more fault tolerable way. This will help to reduce
the repair/replacement cost and engineering expenditures and
makes the computing, specifically service computing such as cloud
computing, more reliable. Failures in CCS result in loss of business
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Fig. 2. Classification of failures.

due to the diversion of users to other vendors.

3.1. Classification of failures

Based on the characteristics of the failures in cloud computing,
we have generated two different classes of failures: architecture
based and occurrence based (Fig. 2). In the architecture based
classification, the failures are further divided into two categories,
Resource Failure and Service Failure. As name implies, resource
failure is caused by the outage of some physical resources like
system breakdown, network or power outage, software error etc.
Most of the work on the failure tolerance in the literature has
focused on resource failures (Javadi et al., 2012; Fu, 2010; Philp,
2005; Vishwanath and Nagappan, 2010). Resource failures could
occur at the provider or the client end. Service failure in cloud
computing means that the cloud provider is unable to provide, or
the user is unable to get, the services promised in the service level
agreements (SLAs). Resource failure could lead to a service failure
but service could fail even in the presence of working resources
during peak loads (Section 3.2.4).

The occurrence based classification of failures is all about the
interconnection between the failures, whether or not the occur-
rence of one failure leads to the occurrence of another in the
system. Occurrence based failures are further divided into two
categories independent failures and correlated failures. In-
dependent failures occur discretely. This type of occurrence is
hypothetical because the literature has demonstrated that there is
a correlation between failures (Fu and Xu, 2007; Gallet et al., 2010;
Yigitbasi et al., 2010; Schroeder and Gibson, 2010). In correlated
failures, the occurrence of a failure leads to the occurrence of other
failures in the system. The failures could be correlated in two
different ways: spatial correlation and temporal correlation. A
complete survey about the correlated failures is discussed in Sec-
tion 3.3.

3.2. Causes of failures

To make CCS more reliable and available all the time, it is very
important to understand the causes of the occurrence of the fail-
ures. Various causes of failures in cloud computing are given be-
low in Fig. 3.

3.2.1. Software failure

As software systems and applications are getting complex day
by day, they became a significant reason of system breakdown
which causes loss in business and revenue. In October 2013,
Knight Capital's’ cloud based automatic stock trading software
went down for 45 min because of an error in trading algorithm
which costed $440 million to the company. Sometimes an un-
expected error could occur during the process of updating the
software, causing the whole system to crash down. In 2013, cloud
services of Microsoft were interrupted for 16 h. It was revealed
that they were performing a regular process of updating the

7 http://nypost.com/2013/10/26/knight-capital-computer-meltdown-just-wait
ing-to-happen/

Planned Reboot
Unplanned Reboot
| Software
Failure Software Updates
Complex Design
— Hard Disk Drives
] RAID Controller
Hardware
— . Memory
Failure ’
— Other Devices
L_|  Denser Circuit Design
Cloud
Failure [ T Overflow
Causes — Scheduling |
] Timeout
. ] Request Stage
Service
Hatincs — Execution Stage
- Power Outage
- Denser System Packaging
- Network Connectivity
- Cyber Attacks
- Human Errors

Fig. 3. Causes of failure in cloud computing.

firmware in a physical region of the data centers. Something went
wrong, which brought down the whole system.? Another major
service outage had seen in January 2015 for 20 min, in which Ya-
hoo Inc. and Microsoft's search engine, Bing, went down during
the code update.® After the crash, the roll back mechanism of
Microsoft did not work, which forced the service to shut down
from the linked servers to get the point where the system was
operating correctly. After a successful update or due to the system
maintenance, sometime reboots are scheduled by the service
provider about which the service users are informed in advance.

8 http://www.datacenterdynamics.com/focus/archive/2013/03/overheating-
brings-down-microsoft-data-center

9 http://techcrunch.com/2015/01/02/following-bing-coms-brief-outage-
search-yahoo-com-goes-down-too/
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Most of the times during planned reboots, service providers con-
sider some backup measures to provide an uninterruptable service
to users. On the other hand, unplanned reboots happen after in-
consistency in data integration after software or hardware update
and the average cost of an unplanned reboot is $9000 per minute.
According to Brian Proffitt,’° up to 20% of attempts are failing in
the deployment of software as a service due to the problem of data
integration. So it is important to shift application design para-
digms from machine-based architecture to cloud-based archi-
tectures. Some of the other causes of system failure or perfor-
mance degradation due to the softwares are memory leakage,
unterminated threads, data corruption, storage space fragmenta-
tion and defragmentation (Vaidyanathan et al., 2001).

3.2.2. Hardware failure

Hardware failure represents around 4% of all the failures oc-
curred in cloud based data centers. Among all the hardware fail-
ures/replacements, 78% are hard disk drives (Fig. 4) (Vishwanath
and Nagappan, 2010). In 2007, hard disk drives and memory
modules were the two most common hardware components sent
by Google for repair (Barroso et al., 2013). Hard disk failures in-
creases as the size and age of the clusters increase. Vishwanath
and Nagappan (2010), has shown that with age, failure in hard disk
drives (HDD) grows exponentially, but after a saturation point it
becomes stable. HDD failures can be reduced by timely replace-
ment, and a increase in system reliability will result.

3.2.3. Scheduling

In the cloud computing architecture, schedulers are responsible
for scheduling the requests on the provisioned resources meeting
the user requirements. Requests waiting to get scheduled are in-
itially placed on an input queue. On the basis of the current
computing and data resource availability, scheduler schedule the
requests in the form of tasks or subtasks to the resources. Being a
restricted data structure, queue has a limitation to store a specific
number of requests. Exceeding the number of requests than the
length of queue will cause drop of new requests and service will be
unavailable to the users. This is called overflow failure. To avoid
the overflow of queues, timeout value is assigned to each request.
If the request waiting time in the queue exceeds the specified time
out value, then the request will be dropped from the one to make
way for fresh requests. This is called timeout failure. This will lead
to the service outage in terms of SLA violation due to the delay in
cloud computing services. Failure prediction (Salfner et al., 2010)
plays an vital role in identifying system resources that are prone to
failure. Scheduler can then avoid placing tasks on those resources
that are less reliable. The more accuracy of the prediction means

10 http://readwrite.com/2013/03/05/software-as-a-service-the-dirty-little-se
crets-of-saas

less failure in the services.

3.2.4. Service failure

In CCS, service failure can happen with or without resource
failure. As stated by Dai et al. (2010), the cause of the cloud service
failure depends upon the stage of the submitted job such that
request stage and executing stage. During the request stage, all the
requests with service requirements submitted by users are kept in
the ready queue. During this stage, users may not be able to access
the services because of overflow or time-out that happens due to
overloading of resources such that during peak hours. In such case,
the underlying resources are working fine but they are unable to
accommodate more requests and service failure happens. On the
other hand, at execution stage, requests are submitted to under-
lying physical resources. If services get interrupted, it means the
cause of service failure is the outage of resources.

3.2.5. Power outage

In cloud based data centers, about 33% of the service de-
gradation has happened due to the power outage. This happens
because of natural disasters or war zones. In 2012, out of 27 major
outages of cloud computing services, 6 were caused by the hur-
ricane Sandy alone.!! In 2011, massive tsunami in Japan put the
whole country in power crisis for a long time, and all the con-
sumer services were affected. It is estimated that natural disasters
contribute around 22% in cloud computing service outage. An
another major cause of power outage is UPS system failures, which
contributes 25% of total power outage failures and cost around
$1000 per incident.

3.2.6. Denser system packaging

Whatever the infrastructure was built ten years ago is now
outdated because the data storage has increased exponentially.
Designers have begun to design very dense servers like blade
servers to keep the storage space low. Total floor space required to
setup an IT infrastructure has reduced by 65%,'? which increased
devise density per square feet and outage cost has risen to $99 per
square feet. As a result of the high devise density, heat release
increases, which causes a rise in temperature and this affects the
working of devices. Facebook has revealed that by packing the
machines densely, electrical current began to overheat and melt
Ethernet sockets and other crucial components. In 2013 data
centers of Microsoft faced a severe outage of 16 h that affected its
cloud services including Outlook, Hotmail, SkyDrive and Micro-
soft's image sharing service'® due to overheating issues.

3.2.7. Network infrastructure

In distributed computing architecture, specifically in the case of
cloud computing, all the services are provided by communication
networks. The whole information has been stored and exchanged
between servers by using the networks. The outage of the un-
derlying network results in the outage of the services of a CCS. For
few cloud based applications such as real time applications, per-
formance of networks plays a key role. A small increment in the
network delay can be termed as an SLA violation which will be
considered as a service failure. The network services could be
broken physically or logically. Around 3% of the service failures
happened due to the loss of network connectivity. There are

1 http://www.rightscale.com/blog/enterprise-cloud-strategies/lessons-
learned-recent-cloud-outages

12 http://www.emersonnetworkpower.com/documentation/en-us/latest-think
ing/edc/documents/white%20paper/en
ergylogicreducingdatacenterenergyconsumption.pdf

13 http://www.datacenterdynamics.com/focus/archive/2013/03/overheating-
brings-down-microsoft-data-center
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various challenges corresponding to the networks such as hop
count, bandwidth, encryption, etc that need to be taken care of to
make cloud computing services reliable.

3.2.8. Cyber attacks

Cyber attacks are the fastest growing reason of the data center
outages. According to Ponemon Institute report (P. Institute, 2016),
the percentage of data center outages due to cyber attacks was 2%
in 2010, which had risen to 18% by 2013 and the latest percentage
is 22%. The average downtime cost of outage by cyber attacks is
$822,000. IBM's report on cyber security intelligence'* has argued
that 55% of cyber crimes or threats were from people having ac-
cess to organization's systems, such that employs. Among other
technical issues such as trojan attacks and software loopholes,
social engineering (Abraham and Chengalur-Smith, 2010) is a
major cause of cyber attacks. In social engineering attackers play
with human psyche by exploiting them with emotions, fear, greed,
etc and manipulate them to leak the confidential information.

3.2.9. Human errors

Along with cyber attacks, human errors also has a big weight
(22%) for the causes of failures in CCS with average cost of $489
per incident. But it has been argued by Schroeder and Gibson
(2010) that the lack of experience is a main reason of occurrence of
human errors. In the survey done by Bianca, it has been seen that
the proportion of human errors is higher during the initial days of
deployment of infrastructure. This clearly shows that adminis-
trators gains more experience with the time, which reduces the
occurrence of human errors. Similar to cyber attacks, social en-
gineering is also a reason for human errors.

3.3. Failure correlation

Correlation is all about the interdependency of activities. If a
failure has happened in a part of the system that leads to failures
in other parts of the system, which could results in the failure of
whole system then it can be said that there is some correlation
between these failures. In distributed computing systems such as
clouds and grids, if multiple computing components are affected
by a common failure then that set or group of computing com-
ponents is called a shared risk group or shared risk domain be-
cause they share a common failure risk (Pezoa and Hayat, 2014)
just like a communication medium in the network topologies. If
the communication medium breaks down then all the data
transfer between the nodes using same communication medium
will go down. Earlier, most of the research to make cloud en-
vironments reliable has been done by considering the in-
dependent distribution of failures (Mickens and Noble, 2006),
which makes the evaluation simpler but error prone in practice. It
has been proved that a single faulty node can influence the
working of whole system (Wang and Wang, 2014). Even the co-
occurrence of failures reduces the effectiveness of various fault
tolerance mechanisms such as encoding schemes, replication and
back-ups (Rangarajan et al., 1998). Failure correlation can be based
on time (temporal correlation) or space (spatial correlation).

3.3.1. Space correlated failures

Failures are called spatially-correlated if occurs within a short
time interval on different nodes of the same system (Fig. 5). Oc-
currence of failures in a failure burst could be correlated in space
and proven empirically or numerically. To prove the correlation
between the failures in space, general numerical methods are

4 http://public.dhe.ibm.com/common/ssi/ecm/se/en/sew03073usen/
SEWO03073USEN.PDF?

required. As a result, Gallet et al. (2010), proposed a numerical
method or model based on three lognormal distribution based
aspects such that downtime due to failures, group arrival and
group size so as to find the space-correlation between failures
occurring during short time intervals. In the given model, a mov-
ing window based method has been used to the find the correla-
tion between the failures in the empirical data. The data was taken
from Failure Trace Archive (FTA) (Kondo et al., 2010), a public
failure repository. It has been found that seven traces out of fifteen
shows a strong correlation between the occurrence of failures
which has challenged the assumption that the occurrence of the
component failures are independently distributed.

3.3.2. Temporal correlated failures

Temporal correlation is about finding the periodicity in the
pattern of occurrence of failures. One of the best methods to find
temporal correlation is Auto-Correlation Function (ACF). As shown
in Fig. 5, if the value of ACF is near to zero then the occurrence will
be considered as random and if value is equal to or nearly equal to
1, it means there is some periodicity. Rangarajan et al. (1998), have
identified that the failures occurred in large scale distributed
computing systems are not uniformly distributed to all the nodes.
Only small number of nodes (less than 4%) are prone to 70% of the
failures occurred in the system. They also found a strong time
varying failure correlation in the pattern of occurrence of failures
on these nodes. Yigitbasi et al. (2010), measure the degree of
correlation of the failure information gathered from various failure
traces with different time lags by using an autocorrelation func-
tion. In their work, they shift the plot generated from the failure
information according to different lags such as hours, days and
weeks to find a repeated pattern. In their work they measured the
behavior of failures by varying the time in large distributed sys-
tems. To characterize the repetition pattern of the failures and
peaks in failures, a formal method has been proposed by the au-
thors to identify the periods that are responsible for the downtime
of the system.

4. Reliable cloud computing services

Reliability in cloud computing is how consistently a cloud
computing system is able to provide its services without inter-
ruption and failure. Generally the reliability is defined as.

The ability of an item to perform a required function under stated
conditions for a stated time period ( Quality, 2010).

Cloud computing is a service-oriented architecture so the at-
tributes of the reliability rely on service models such as, Software
as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS). To make cloud services reliable, both service
providers and service users have their own responsibilities that
vary according to the service model. To avoid service failure and to
provide resiliency, three different design principles for reliable
services (Fig. 6) have been proposed by Mike et al. (2014) from
Microsoft Corporation. Good design following the given principles
will minimize the effect of failures and enhance system resilience
so that there is minimal interruption to services. If a failure event
has occurred at a particular instance, then partial or even delayed
services need to be delivered. Once the failure has happened,
important measures to recover the service from the degradation
due to failure also needs attention. The recovery should be done
with minimum intervention of human. Various mechanisms such
as checkpointing, redundancy, etc. (Section 4.1) have been pro-
posed to recover the services of cloud computing upon failure.
During the event of failure and process of recovery from the fail-
ure, data integration is a big concern. To avoid inconsistency in the
data, mechanisms have to be implemented. On the other hand,
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data security is also an issue in these days. There are various in-
cidents in history such as the Sony pictures entertainment hack,
Dropbox leakage and icloud leakage that highlights the need to
preserve the integrity of the data to make the services reliable and
trustable.

4.1. Service failure management in cloud computing

To provide reliable services in cloud computing, one needs to
manage service failures. All the proposed architectures and tech-
niques designed for well-behaved cloud environment have to be
redesigned for a failure-prone cloud environment. To manage re-
source failures in computing environment for reliability assurance,
various techniques and methods have been proposed and im-
plemented (Table 1). Since the service-oriented architecture is
used by cloud computing, all the techniques and methods need to
be explored from the perspective of service reliability. All the
failure management techniques are categorized into two groups
(Fig. 7).

4.1.1. Reactive failure management

In reactive failure management, measures are taken after the
occurrence of failure. The working of reactive failure management
techniques is similar to the working of reactive routing protocols
in networks (Sharma et al., 2010). In reactive routing protocols,
there are no routing tables. All the routes are created on demand.
In the same way, whenever failures have occurred in cloud ser-
vices, the required measures will be taken by restarting the ser-
vices from the last execution instance recorded earlier using
checkpointing or logging.

Checkpointing is a widely adopted reactive fault tolerance
technique, in which the current state of a running process is saved
on some backup resources and on the occurrence of failure, the

process will be restarted or rolled back by using the last saved
state. It has proved that the systems running without check-
pointing take exponential time to complete the task (Duda, 1983).
By using checkpointing, the exponential time becomes linear. On
the basis of the working principle, checkpointing has divided into
three different categories (Elnozahy et al., 2002) such as Un-
coordinated Checkpointing (Random Checkpointing), Coordinated
Checkpointing (Periodic Checkpointing) and Communication In-
duced Checkpointing (Fig. 7). Various cloud management software
suits such as UniCloud by Oracle, Intel's Data Center Manager
(DCM) are incorporated with the checkpointing mechanism to
provide uninterruptable cloud computing services. It has been
argued that in the large-scale systems like clouds, checkpointing
mechanisms could create large overheads as well, if performed
frequently (Fu, 2010). It has been estimated that the checkpointing
creates overhead of 151 h for a job of 100 h in the petaflop systems
(Philp, 2005). However, if a running program check pointed in-
frequently after long intervals, then it will make the re-execution
of program lengthy after the failure, which will increase the total
execution time of the program. The problem of determining the
intervals for checkpointing is called optimal checkpoint interval
problem. In the literature, finding the optimal checkpointing in-
terval attracts many researchers (L'Ecuyer and Malenfant, 1988;
Daly, 2006).

Replication is another reactive method to provide fault toler-
ance in which the backup resources are used to run replicas of the
running processes. On the basis of updating of running replicas to
handle the inconsistency, replication has divided into two cate-
gories called Primary Backup (Passive) replication and Active re-
plication (Fig. 7). Various cloud computing providers use replica-
tion mechanism to provide fault tolerance at different levels. Mi-
crosoft's Azure uses virtual machine replication to provide fault
tolerance at the cloud level. In the case of the failure of a virtual
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machine, Azure always keeps replicated VMs to take charge of the
failed VM. At Infrastructure as a Service level, OpenStack, an open-
source cloud computing platform uses data replication to store
data by writing the files and objects at multiple disks spread
throughout the servers in the data centers. There are many more
examples where the replication is in use like DFS replication,
Apache Hadoop, Amazon EBS etc. A complete survey of replication
mechanisms has been done by Guerraoui and Schiper (1996). The
biggest challenge to run the replicas of a process is to maintain the
consistency between the replicas and propagation of update
messages. Various methods and mechanisms to handle the chal-
lenges and use of replicas in cloud computing environment can be
seen in Table 1.

Logging or message logging protocols. Each process is recorded
or saved in its present state and messages are sent periodically as
the logs at some stable storage. When a process crashes, a new
process is created on the place of a crashed process by using the
recorded logs. To get the pre-failure state of a crashed process, all
the logged messages are evaluated in the same order in which
they were generated. Once the new process has created after a
crash, the state of the new process should be consistent with other
running processes. If the state of the process remains inconsistent
then the process will be known as orphan process. To reduce the
overhead of logging, checkpointing is incorporated with logging
(Table 1). Once the checkpoint has been saved for the state of a
process then all the logged messages before the checkpoint can be
removed to save storage space. We classify the process of logging
into two classes: Orphan process based and Storage based. These
are further combined with each other to make more classifications
(Meyer et al.,, 2014) (Fig. 7). In the upper sections, various co-
ordinated methods are used to provide fault tolerance in dis-
tributed systems. Because of the overhead generated by the co-
ordination between the processes, they have scalability issues. The
uncoordinated methods such as message logging seems to be a
good option in terms of application makespan for CCS. Lemarinier
et al. (2004), have shown that if the mean time between failures
(MTBEF) is less than 9 h then messaging logging is a better option
than the coordinated checkpoint because of less overheads.

4.12. Proactive failure management

Due to the large overhead and expensive implementation of
reactive failure management mechanisms, cloud service providers
have begun to adopt proactive failure management mechanisms.
In proactive failure management, the prevention measures have
been taken before the occurrence of failure. The productivity of
proactive failure management methods depends upon the pre-
diction of the occurrence of the failures (Fu and Xu, 2007; Islam
et al., 2012). On the basis of the failure prediction results, the
running processes are migrated from the suspected resource to
other healthy resource for an uninterruptable execution. The ac-
curate prediction of the occurrence of failure will make the failure
management more efficient and reliable. Failure prediction is
classified into two categories: offline failure prediction and online
failure prediction. A complete survey about the failure prediction
methods has done by Salfner et al. (2010). After the results of the
failure prediction methods, suitable actions are taken by proactive
fault tolerance mechanisms. Migration is the method that is used
to provide fault tolerance by incorporating failure prediction
methods. With the introduction of high speed networks and dis-
tributed architecture of computing, the migration of running tasks
became possible. With the emergence of cloud computing, the
migration has divided into the process migration (Milojici¢ et al.,
2000) and virtual machine migration. By considering the dynamic
nature of the cloud infrastructure, only virtual machine (VM) mi-
gration based fault-tolerance methods have been considered in
Table 1. To migrate the running VMs from a faulty server to health
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one, two methods have been proposed in the literature: Pre-Copy
and Post-Copy (Fig. 7).

Pre-copy VM migration approach: The pre-copy approach
(Shribman and Hudzia, 2013) has two different phases: Warm-up
Phase and Stop-and-copy Phase. In warm up phase, hypervisor
copies the state of the running VMs such as CPU state, memory
state, and state of other devices from a faulty server to the des-
tination server. As the warm-up phase completes, the virtual
machine stops at the source machine and stop and copy phase
initiates. The stop and copy phase copies the remaining files or
pages (if any) in the memory that gets modified (dirty pages)
during the warm-up phase. After the transfer of all the pages the
virtual machine resumes its execution over the destination ma-
chine. The time between the suspension of a virtual machine
from the source node and resumption over the destination node
is called down-time. Many of the hypervisors such as VMware,
Xen, KVM are using pre-copy migration approach (Ma et al,,
2010).

Post-copy VM migration approach: In post copy approach (Hines
et al., 2009), the running VMs gets suspended at the source nodes
and migrated to the destination nodes with partial attributes of
the execution state such that CPU state, register usage etc. After
getting the destination, the VMs resumes with the execution. In
parallel the source machine also stay active serving the migrated
VMs. Whenever a VM do not find a page in its local memory, it
generates a page fault (network fault). On the generation of a
network fault or page fault, destination machine redirects the page
request to the source machine which in-turn responds with the
faulted page. In general, the memory image can be transferred in

Energy Efficiency Applications

Power Aware Resource
Management

the background after execution of VM at destination or it can be
transferred on-demand in response of network fault.

As stated earlier, along with providing reliability to the services
and optimized resource utilization, virtual machine migration has
also been proved as a very promising technique to manage the
energy consumption in CCS. Thorough details about the mechan-
isms used to manage the energy consumption in cloud computing
paradigm are discussed in the next section.

5. Energy management in cloud computing

Along with the reliability of cloud computing services, energy
consumption by the underlying complex infrastructure providing
cloud services is also a big concern for cloud service providers. As
increasing the reliability of cloud services makes it profitable by
attracting more users or clients, decrease in the energy con-
sumption will make it even more profitable by reducing the op-
erational expenses of underlying infrastructure in terms of elec-
tricity bills. Besides the construction of data centers by adding
temperature monitoring equipments, optimized air vent tiles,
putting plates to block cold air passing through the racks, de-
signing of optimized software systems is also very important for
the proper utilization of resources of cloud infrastructure to in-
crease the energy efficiency. As shown in Fig. 8, energy con-
sumption can be optimized at the hardware level, software level
and intermediate level. In the following sections, we have explored
different techniques and methods to regulate the energy con-
sumption in CCS. A complete list of the existing most energy

Less use of buffers and registers,
instruction set optimization, etc.

Energy aware task scheduling and
resource provisioning policies

Hardware Energy Efficiency

Clock frequency, voltage supply,
logical gates, transistors, etc.

Fig. 8. Levels of energy efficiency enhancement.
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efficient distributed
Green500."

In some studies, problem of high power consumption and high
energy consumption has considered separately (Beloglazov et al.,
2011). But because of the direct proportional relation between the
energy and power consumption (Eq. (1)), both energy and power
have been used interchangeably in this study and this has done by
many studies in this domain (Faragardi et al., 2013).

E=PT M

computing systems is provided by

5.1. Static power management

Also known as offline energy management deals more with
circuitry systems. It is more engineering oriented approach. In
static management of power, whole optimization takes place at
the system level during the design time. It deals with the geo-
graphical distribution of the processing centers, circuit manip-
ulation, redesigning of architectures, instruction sets, transistor
sizing, path balancing and factorization (Devadas and Malik, 1995).
The main goal of the static power management is to keep the
energy consumption or power consumption low by using low
power usage components. In this category, the energy consump-
tion is managed at two levels: CPU level and System level. It has
been proven that among all the computing components, CPU
consumes 35-50% and provides a big scope to optimize energy
consumption (Valentini et al., 2013). At CPU level, the optimization
could be done at register level or at instruction set level. At the
register level, all measures to reduce the energy/power con-
sumption are taken by optimizing the register transfer level (RTL)
activities and at the instruction set level, different types of in-
struction set architectures (ISA) have been proposed to reduce the
power consumption such as reduced bit-width ISA. Work has been
done on instruction set optimization by various researchers to
optimize the power consumption (Lee et al., 2013).

Along with CPU, there are other components who are also big
contributors to the overall power consumption of the system such
as memory components, network facility and software systems.
System level static power management methods have been used
to regulate the energy/power consumption by such components.
System level power optimization also deals with setup techniques.
Questions such as how to choose the right components during the
setup phase of cloud systems to minimize the asynchronization
between different components, how to place the servers to mini-
mize the delays, choice of operating systems and application
softwares are answered using system level power management
methods. Architectures such as FAWN (Andersen et al., 2009) and
Gordon (Caulfield et al., 2009) have been proposed to couple the
low power CPUs with local flash storage and data centric powering
systems to balance the computation and I/O activities to make the
cloud computing architectures more performance and energy ef-
ficient. Geographic distribution of the machines (Tiwana et al.,
2010), choosing components with maximum compatibility and
network topologies to minimize the power consumption belongs
to system level power optimization.

5.2. Dynamic power management mechanisms

Dynamic power management (DPM) deals with the regulation
of energy consumption by using software based policies. Each type
of server components provides a different dynamic power range
such as the difference between the maximum power consumption
and minimum power consumption. In the Fig. 10, it has shown

15 http://www.green500.org/greenlists

that CPUs can consume around 30% of their peak power con-
sumption in the low activity modes which gives the range of 70%
to scale up and down. On the other hand, memory and disk drives
have the dynamic range of 50% and 25%, respectively followed by
the network facilities such as switches or routers, which have the
range of only 15% (Beloglazov et al., 2011). On the basis of dynamic
range of power consumption, the working of components can be
scaled up or scaled down to regulate the power/energy con-
sumption. On the basis of approach used to reduce the power/
energy consumption, the classification of DPM methods is done in
two levels, Hardware Level (using Power-scalable components)
and Software Level (using Power-scalable resource management).

5.2.1. Dynamic power management using power-scalable
components

At the component level, all the components supporting low
activity modes are considered as the power scalable components
such as CPU and can be manipulated using DPM methods. As
stated earlier, CPU is the major power consuming component
followed by the memory units. So in majority of cases, DPM
methods are using two components such that CPU and memory
for power/energy regulation.

Power Scalable CPUs use the relation between the power supply,
operational frequency and voltage (Eq. (2)) to regulate the power
utilization in processors (Fig. 10). Advancement in the processor
architectures make CPUs able to run at different activity modes
using different voltage and frequency rates.

denamic = aCfV2 (2)

where a is the logical or switching activity, C is the capacitance, f is
the operational frequency and V is the supply voltage. In com-
plementary metal oxide semiconductor (CMOS) circuits, the energy
consumption increases quadratically as the supply voltage in-
creases. All the above mentioned power management techniques
expolit this factor by reducing the supply voltage (DVS), operational
frequency (DFS) or both at the same time (DVFS) (Le Sueur and
Heiser, 2010; Zhu et al., 2004). There are many ways to scale down
the high voltage supply to decrease the high energy consumption
but one of the best is to exploit the stall time. Due to the speed gap
between the main memory and the processor, significant amount of
clock speed of processor has been wasted whilst waiting to get the
required data from the main memory. During the waiting time (stall
time), the processor frequency can be brought down by manip-
ulating the supply voltage to the processor to save the excessive
energy/power consumption (Kondo and Nakamura, 2005). Many
semiconductor chip makers are using given voltage and frequency
scaling techniques at different levels and in different devices. Intel's
Woodcrest Xeon Processors works at eight different operating fre-
quencies by reducing the maximum operational frequency by 8.3%,
16.5%, 25%, 33.3%, 41.6%, 50.0%, 58.3%, 66.6%, 77.7%, 88.9% and 100%
(Gandhi et al., 2009). By using CPU throttling, Intel has developed
SpeedStep CPU throttling technology and AMD has developed two
CPU throttling technologies: CoolnQuiet and PowerNow!. Along
with the frequency scaling of the CPUs, AMD has also implemented
frequency throttling in Graphical Processing Units (GPU) as AMD
PowerTune and AMD ZeroCore Power.

Power Scalable Storage Systems regulates the activity of storage
devices such as disk drives to reduce power consumption. In the
distributed computing systems, energy consumption by disk
drives is significant. It has been estimated that around one-third of
the total electricity supplied to the data centers is required for the
mechanical operations of disk storage systems (Kim and Rotem,
2012). Typically, when a disk is in standby, it consumes about one
tenth of the power that it consumes during the spinning mode.
The energy consumption by storage systems in large data centers
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need to be considered seriously because the requirement of the
storage systems is increasing by 60% annually (Pinheiro et al.,
2006). In large cloud based data centers, disk drives usually re-
mains underutilized and use less than 25% of their total storage
capacity. This provides large scope to reduce the energy con-
sumption by disk drives by increasing the utilization and by
turning off the unnecessary disks (Gurumurthi et al., 2003). Var-
ious methods to make storage system power efficient are given in
Fig. 9. A thorough survey on the energy efficiency of the disk drives
has been done by Bostoen and Mullender (2013).

Power Scalable Memories are addressed least among all the
components addressed to minimize the energy consumption in
large scale distributed computing systems. According to David
et al. (2011), under specific workloads, memory unit can consume
23% on average, of the total power consumption. In Fig. 10, the
dynamic range of power consumption of memories is 50%, which
provides plenty of scope to increase the power/energy efficiency of
memory units. Like CPUs, the concept of low frequency and less
voltage for power reduction (DVES) is also applicable to memory
units. In the case of DRAMs, the power consumption of some of
the components such as storage arrays of DRAM can be scaled by V
and some of the components can be scaled by V2. Making energy
aware memory components and using them in cloud computing
environment gives rise to new challenges. Making power efficient
memories will be achieved at the price of performance. The power
aware techniques used in the memory units should be leveraged
to save overall power consumption of the large scale systems
without effecting the performance of the systems. In response to
this, a software platform called Memory Management Infra-
structure for Energy Reduction (Memory MISER) consists of a
modified Linux kernel and implementation of a PID controller has
proposed by Tolentino et al. (2007). The proposed architecture has
been proved to reduce energy consumption of memories by up to
70% and up to 30% for the overall system.

5.2.2. Dynamic power management using power-scalable resource
management
With the adoption of energy efficient components in the
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Fig. 10. Dynamic range of power consumption of various server components.

infrastructure of the cloud systems and, due to the vast amount of
data for processing, the management and monitoring of the re-
sources is very important. Wise management of the resources
including resource provisioning, task scheduling, performance
monitoring leads to less energy consumption and more profit-
aware computing. Although the management of the resources is a
general term for the distributed computing environment but in
the context of cloud computing it is more associated with virtua-
lization technology. The employment of the virtualization tech-
nology makes it possible to minimize the number of working re-
sources by keeping the utilization of resources high by executing
more virtual machines processing different workloads.

In this section, various mechanisms that execute the tasks on
cloud computing infrastructure in an energy efficient manner will
be highlighted. This section answers several questions such as how
to provision the resources in an energy aware manner, How to
distribute or schedule the workload among the provisioned com-
puting components in an energy efficient way, When to migrate
the running tasks from one underutilized resource to other to save
the power consumption, When and how many computing com-
ponents need to be turned on or turned off to save energy. In the
literature, many algorithms, heuristics or architectures are pro-
posed to handle the issues of power/energy consumption in cloud
computing environments (Table 2). Mechanisms to reduce the
energy consumption by using software techniques are divided into
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Table 2
Survey of energy management mechanisms in cloud computing.

Authors Power scalable resource Objectives Workload Components Power saving method
management

Beloglazov et al. (2012) Reactive Resource Utilization Web CPU DVFS

Garg et al. (2011) Reactive Carbon Footprint, Profit HPC CPU DVFS

Burge et al. (2007) Reactive, Proactive Profit Multiple System On/Off

Chen et al. (2005) Reactive, Proactive Hybrid Profit Web CPU DVS

Lee and Zomaya (2012) Reactive Resource Utilization Multiple System

Bradley et al. (2003) Proactive Web, Email Database CPU On/Off

Wang et al. (2014) Proactive Resource Utilization Multiple System On/Off

Ghorbani et al. (2014) Proactive Multiple CPU, Memory

Subirats and Guitart (2015) Proactive Resource Utilization Batch, Web

Srikantaiah et al. (2008) Reactive Resource Utilization Multiple CPU, Disk

Kord and Haghighi (2013)  Proactive Resource Utilization, Profit MapReduce System

Gandhi et al. (2009) Proactive Resource Utilization Web CPU, Memory DFS, DVFS

Egwutuoha et al. (2013) Proactive Resource Utilization HPC CPU

Le and Wright (2015) Reactive Carbon Footprint, Profit HPC CPU

Tesfatsion et al. (2014) Reactive Carbon Footprint Video Encoding CPU VM Migration, DFS

Wadhwa and Verma (2014) Reactive Resource Utilization, Carbon Multiple CPU DVES

Footprint

Khosravi et al. (2013) Reactive Carbon Footprint BoT, Web System VM Placement

Lefévre and Orgerie (2010) Proactive Carbon Footprint, Profit Multiple System On/Off

Garg et al. (2011) Reactive Carbon Footprint HPC CPU

Mezmaz et al. (2011) Hybrid Resource Utilization HPC CPU DVS

Gandhi et al. (2011) Hybrid Resource Utilization Web System

Subrata et al. (2010) Hybrid Resource Utilization Web System Hibernation

Salfner et al. (2010) Hybrid Carbon Footprint Multiple CPU On/Off

three different categories: Reactive, Proactive and Hybrid (Hameed
et al., 2014). These can be implemented in centralized and de-
centralized ways.

Reactive management of resources takes all the measures to
manage the energy consumption according to the current state of
the system. The reactive mechanisms are based on feedback or
monitoring. The continuous monitoring of the system is done and
according to the pre-defined constraints such as thresholds the
corrective actions are taken by migrating or consolidating the
workload to regulate the energy consumption of the system. The
productivity of the reactive management of energy consumption
depends upon the accuracy of the monitoring procedure. In vir-
tualized computing environments like clouds, when the resources
are not fully utilized the migration or consolidation of the running
virtual machines to some other resource is possible and promised
as the best technique to reduce the energy consumption. Along
with regulating the energy consumption, with the efficient utili-
zation of the resources, the carbon emission rate is also a concern.
As the energy consumption will be increasing, the temperature
will rise and more power will be required to run the cooling in-
frastructure to keep the temperature low. For the generation of
each unit of electricity, fuel has to burn that adds to the carbon
emission. This is also a main factor that is under consideration in
these days. United Nations and governments of various countries
like Japan'® are imposing the penalties and developing protocols
such as UNs Kyoto Protocol'” to reduce the carbon footprints by
the cloud based data centers. A thorough survey of work on the
energy consumption by using the reactive resource management
mechanisms is given in Table 2.

Proactive Management for Resources also known as predictive
management of resources use the information about the average
behavior of the system rather than the current state of the system.
The decision about choosing the optimized resources in terms of
performance, energy consumption and reliability has been taken
on the basis of the data collected during the previous runs. By
using the collected data, predictions are done about the behavior

16 http://www.jdcc.or.jp/english/
17 http://unfccc.int/resource/docs/convkp/kpeng.pdf

of the system to make the adequate decisions about the allocation
of resources to minimize the energy consumption. In the literature
various prediction models are proposed to minimize the energy
consumption (Bradley et al., 2003). Similar methods using pre-
dictive approach to reduce energy utilization in cloud computing
environment is present in Table 2.

Hybrid Management of Resources use both predictive behavior
of proactive methods and monitoring behavior of reactive meth-
ods to tune the energy consumption and resource utilization. Due
to the dependency on the results of the prediction mechanisms,
methods in proactive resource management always lags because
as mentioned in Section 4.1, it is hard to predict the behavior of
the system accurately including the energy consumption as well.
On the other hand, due to the large overhead, the reactive energy
efficiency resource management methods possess delays, which
add to the power inefficiency of the whole system. By combining
the merits of reactive and proactive methods, the hybrid methods
have been designed. In the literature (Table 2), some work has
been done by various authors combining both reactive and
proactive methods to reduce the energy consumption of the CCS.

6. Trade-off between reliability and energy efficiency in cloud
computing

We have observed in previous sections that most of the re-
search has focused either on service reliability or energy efficiency
in cloud computing environments. As analyzed, existing mechan-
isms do provide reliability to cloud computing services and have
proved to be very efficient and optimized (L'Ecuyer and Malenfant,
1988; Clark et al., 2005). By using these methods, cloud computing
service providers are claiming on the one hand that their cloud
services are more than 99% available in terms of uptime allowing
only 80 h of downtime per year, approximately. However, all the
given methods require extra back-up and storage resources to
store logs and checkpoints to allow last state system recovery in
the case of failure or interruption. Adding extra resources to the
infrastructure increases the energy consumption at a greater rate
than reliability gains and has a direct impact on the profit margins
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Fig. 11. Reliability and energy efficiency tradeoff in cloud computing systems.

of the service providers and users and negatively impacts natural
environment.

Energy management mechanisms that regulate system perfor-
mance and hardware resources reduce the system energy con-
sumption. The key techniques used to reduce energy consumption
is running the resources on low power scaling level or by turning
off the idle resources such as back-up, which will reduce the re-
liability of the system. For example, in the case of virtual machine
consolidation (key technique to reduce energy consumption in
CCS), if a physical machine fails due to some hardware or software
issues before the completion of tasks and there are no recovery
resources, then all the virtual machines and their corresponding
processes will have to start again. This will dramatically increase
overheads such as energy consumption and resource utilization.
Service providers will lose a lot of revenue in terms of penalties for
SLA violations and most importantly, trust of the users.

In Fig. 11, a crucial trade-off between reliability and energy-
efficiency of CCS can be clearly seen. On the one hand, reliability of
the system increases as the resource redundancy increases. But
increasing the number of redundant resources used to store back-
ups or to run replicas has adverse effect on the energy efficiency of
CSS. On the other hand, as the frequency of virtual machine con-
solidation increases, energy efficiency of the system increases. But
high VM consolidation has the negative effect on the reliability of
the system. Both reliability and energy efficiency of CCS increases
asymmetrically. This trade-off opens up new opportunities and
challenges in CCS by considering both these elements simulta-
neously. It is very important to reach equilibrium between these
two metrics from different perspectives such as quality of services,
revenue, operational cost and environment. There is a distinct
need for more research in the area of optimizing the relationship
of system reliability and energy efficiency in CCS (Table 3). The
following section of this paper seeks to outline the current re-
search into the interplay of reliability and energy efficiency in CCS.

6.1. State of the art in reliability and energy efficiency mechanisms in
cloud computing

In this section, current research combining reliability and en-
ergy efficiency of cloud computing has highlighted and gaps have
been identified. The brief description of this section has provided
in Table 3.

Faragardi et al. (2013) have proposed an Integer Linear Pro-
gramming (ILP) based mathematical model to regulate the relia-
bility and energy consumption of the CCS by taking into

Table 3

Survey of trade-off between reliability and energy management in cloud computing.
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Performance evaluation

Failure type
method

Energy management

Energy management
type

method

Failure management
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Failure management method

Authors
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Failures

Proactive

On/Off

Proactive
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based Failure Aware Resource
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Faragardi et al.

(2013)

Message Passing Interface(MPI)

Applications

Independent Simulation

Failures

Proactive Process Migration Proactive

Failure Prediction based Process

Migration

Egwutuoha et al.
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Lin et al. (2013)
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consideration quality of services in terms of service deadlines. On
the basis of this model, a swarm intelligence resource scheduling
method based on Imperialist Competitive Algorithm (Atashpaz-
Gargari and Lucas, 2007) has proposed to allocate the resources in
a failure-aware and energy-efficient way. To introduce the failures
in the systems, Faragardi has used a Poisson process-based failure
model that generates constant and independent failures. Along
with the failure model, an energy model has also been proposed
based on CPU utilization. By using the equations for reliability and
energy consumption, a common ILP-based cost function has been
used to balance both energy and reliability. The proposed solution
has improved the energy utilization and system reliability sig-
nificantly by 17% and 9% respectively in comparison to a hybrid
genetic algorithm.

In this study the occurrence of failures has been modeled by
using Poisson distribution, which has proved to be a poor fit by
many researchers (Plank and Elwasif, 1998; Schroeder and Gibson,
2010). Normal and log-normal distributions have proved a better
fit for failure generation modeling. Authors have also been mod-
eled independent occurrence of failures, which have been chal-
lenged (Rangarajan et al., 1998; Gallet et al., 2010) by showing
temporal and spatial correlation between the failures.

Egwutuoha et al. (2013). have developed a generic proactive
energy efficient fault tolerance model independent from re-
dundant resources for CCS executing high performance computing
(HPC) applications. To provide immunity from task failures, a rule
based prediction mechanism has been used to foresee failures
using the data gathered by a back end service “FTDeamon” using
LM-sensors. A mathematical model has been developed to evalu-
ate the weight of the current state by multiplying the LM-sensor
values of all components of systems. After calculating the current
weight, a comparison has been done with the critical state
threshold value. On the basis of comparison result, decisions about
provisioning of new resources, relinquishing of faulty ones and
migration of processes has been taken. To make the method less
expensive and energy efficient, no extra resources are provisioned
initially to provide fault tolerance. On the basis of the results of
failure prediction mechanisms, extra resources are provisioned to
initialize the virtual machines to migrate the running processes
from failing hosts/resources. Process level migration has been used
instead of using traditional VM level migration because process
level migration has less overheads and makes the migration fast,
which further helps to reduce overall energy consumption and
make fault tolerance more dynamic and less complex.

The proposed mechanism has been designed for message
passing interface applications, which require uninterruptable
functioning of resources for a long duration. As no backup re-
sources are used to provide immunity from failures to running
processes, this algorithm depends highly upon the accuracy of the
failure prediction mechanism. The average accuracy of failure
prediction mechanisms is 76.5% (Fu, 2010). This level of accuracy is
unsuitable for HPC workload. To make the mechanism more at-
tractive, both reactive and proactive fault tolerance mechanisms
should be used simultaneously.

Sampaio and Barbosa (2014) have proposed two algorithms
POwer-and Failure-Aware Relaxed time Execution (POFARE) and
POwer-and Failure-Aware Minimum time Execution (POFAME).
They address the problem of mapping of virtual machines to
physical machines, so as to increase the completion rate of the
tasks with minimum energy consumption in a private cloud
computing environment. Stop and copy VM migration employing
failure prediction has been used to make the services available and
to execute the tasks by deadline without any interruption. CPU has
chosen optimistically on the basis of predicted Mean Time be-
tween Failure (MTBF) and according to the capacity required to
finish the tasks within their respective deadline. SLA terms are

ensured by completing the tasks on time and avoiding penalties. A
tentative private cloud architecture has also been designed in
which a cloud manager monitors the status of virtual and physical
machines. Based on the information, the cloud manager allocates
tasks concerning energy consumption improvement, so as to fa-
cilitate physical machine fault tolerance. To save energy and pro-
vide fault tolerance, virtual machine consolidation or migration
has been employed as well as putting free physical machines in
sleep mode. Three other algorithms: Common Best-Fit (CBFIT),
Optimistic Best-Fit (OBFIT) and Pessimistic Best-Fit (PBFIT) are
used to evaluate the performance of proposed algorithms. After
the intensive simulations performed by using Poisson distribution-
based random workload and Google-based workload, POFARE
outperformed all the algorithms and gives the best results.

A limitation of Altino M. Sampaio's energy model lies in the use
of only CPU power consumption, without consideration of any
other components such as memory and disk-drives and hetero-
geneity of physical machines. Voltage scaling would have been
more energy efficient solution than entering and waking-up the
nodes from the sleep state. Similar to Egwutuoha et al. (2013),
performance degradation of the system has not been considered.
To make the reliability and failure models simple, most of the
researchers assume either the system works fine or it fails. This
kind of binary behavior is valid for components such as CPU but
not for the whole system because in virtualized computing en-
vironments, system slowdown or performance degradation occurs
because of shared resources between virtual machines. This leads
to the system failure. In the given work, running multiple virtual
machines on the same node has been implemented but assumes
no performance interference, which is not the case in the real
world and has to be considered. Failure tolerance in proposed
solutions relies completely on failure prediction. If physical ma-
chine fails outside of the failure forecasts, then all the virtual
machines have to be re-initiated because of a non-forecasted
failure then all the running virtual machines have to be re-
initiated.

Garraghan et al. (2014) have done an empirical analysis by
using google traces to analyse the failure related energy waste in
cloud computing environments. This analysis highlights the im-
pact of failures at task level (software level) and server level
(hardware failures). All the terminal events taken from Google
cluster traces are divided into three categories: Kill, Evict and Task
fail. SpecPower2008 benchmark (Benchmarks, 2000) has been
used to calculate the energy consumption of per failure event. In
the study, it has been noted that Kill and Evict contributes to more
energy wastage (48% and 39% respectively) than task failures
(13%). The occurrence of kill and evict events have been considered
because of scheduling, which is one of the reasons of failures in
cloud computing services (Fig. 2). All the tasks are assigned with
different priorities from 0 to 9 and occurrence of failures has been
scaled on the basis of priorities of the interrupted tasks. The low
priority tasks have been found most prone to failures with mean
time between failure of only 1 h and vice versa for high priority
tasks (48 h and 58 h respectively). 35% of failures occur on tasks
with lower priority. At the server level, numbers of failures are
calculated on the basis of the architecture type of the underlying
servers. The frequency of the occurrence of failures (MTBF) and
recovery time (MTTR) is independent of the population of the
servers. For energy wastage, priority 0 tasks have only minor en-
ergy wastage but priority 8 and 9 tasks waste large amount of
energy in comparison to the number of failures because of re-
submissions. This means that the energy wastage is independent
from the number of task failures. The proportion of energy wa-
stage depends upon the characteristics of the failed tasks such as
the task length. The longest running tasks (priority 9) have the
greater impact, which wastes a considerable portion of the energy
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(up to 65%). From the analysis of all type of terminal events, task
failures contribute upto 21% of the total energy wastage because of
the resubmission and recomputation of failed tasks.

In conclusion, it has been claimed that the choice of a me-
chanism to regulate the energy wastage in the presence of failures
should be made by considering physical architecture or scenario.
Inappropriate mechanism will lead to more energy wastage rather
than reduction, for example the adoption of task migration for low
priority tasks will lead to high increase in execution time which
further increase the energy consumption. Garragham's work is
based only on empirical analysis but has not proposed any
mathematical model or formal procedure to regulate the energy
consumption in the presence of failures.

el Mehdi Diouri et al. (2012) have evaluated the energy con-
sumption by checkpointing and fault tolerance (coordinated and
uncoordinated) protocols. In uncoordinated protocols, logs are
stored at Hard Disk Drive (HDD) or Random Access Memory (RAM)
for message logging. When comparison has been made between
the power consumption of RAM logging and HDD logging, power
consumption by RAM logging has been found to be less than the
consumption of HDD logging. So it has been concluded that to
provide fault tolerance in extreme scale distributed computing
systems, message logging protocol using RAM to store logs should
be preferred over the HDD based message logging and check-
pointing. For coordinated protocols, energy consumption patterns
are similar to the patterns seen in uncoordinated protocols and
checkpointing. The energy consumption by coordinated protocols
depends upon the duration of the coordination process, which
further depends upon process. Poor synchronization means a
longer coordination process and more power consumption. By
slowing down the fastest process, extra energy consumption can
be minimized.

To make the decision about choosing suitable energy aware
fault tolerance methods, an evaluation of coordinated (3 co-
ordinate) and uncoordinated (RAM logging) fault tolerance pro-
tocols has been done using 4 NAS parallel benchmarks with 16 and
64 processes. All experiments are conducted on Lyon site of
Grid5000 (Cappello et al.,, 2006) using their energy measuring
infrastructure facility. It has been concluded that message logging
protocols are more suitable for the applications involving less data
exchange and vice versa for coordinated methods.

Zhang et al. (2015) have addressed an optimization problem to
maximize the reliability with energy conservation for precedence
constraint tasks in heterogeneous clusters by proposing three al-
gorithms. They are: Reliability-aware Heterogeneous Earliest Fin-
ish Time (RHFT), Reliability-aware Critical-Path-On-a-Processor
(RCPOP) and Reliability Maximization with Energy Constraint
(RMEC) algorithm. All the proposed algorithms have three phases:
task priority establishment, processor frequency selection and task
to processor mapping. In task priority establishment phase, all the
tasks are prioritized according to their URank, which is a method
to calculate the topological order for directed acyclic graphs (DAG).
After calculating the URanks (bottom up approach), all the tasks
are pushed in priority queue in decreasing order starting with
highest priority. Once tasks are ordered, best frequency and vol-
tage pair are chosen. This consumes less energy in executing tasks
ready at the top of the queue. Along with the proposed algorithms,
Hierarchical Reliability Driven Scheduling (HRDS) and Reliable
Dynamic Level Scheduling (RDLS) algorithms are also used for a
comparative evaluation.

To evaluate the performance of given scheduling algorithms a
large number of randomly generated DAG with different number
of nodes (tasks) and real-world applications are used. For real
world applications, three problems i.e. Fast-Fourier Transforma-
tion (FFT), LU decomposition and Gaussian elimination are chosen
to generate task graphs. The simulation results show that in all

cases, RMEC outperforms other algorithms in terms of reliability
and energy consumption. Though the proposed algorithms have
worked well in the present scenarios, results may vary in the
presence of correlated failures. So, to make the solutions more
promising and applicable, consideration of models for correlated
failures (Yigitbasi et al., 2010; Gallet et al., 2010) should be taken
into account.

Deng et al. (2012) have proposed a Reliability-Aware server
Consolidation stratEgy (RACE) to address a multi-objective pro-
blem with reliability and energy cost factors. A utility model that
can estimate the cost of server consolidation in terms of reliability
and energy efficiency whilst still mitigating SLA violations occur-
ring due to resource demand and supply mismatch has been for-
mulated. The unified utility model has been used by a genetic al-
gorithm improved grouping genetic algorithm (IG2CA) to provide
an optimized solution of the problem by choosing the best among
the initial configurations provided by the proposed reliability-
aware resource buffering and VM to PM mapping heuristics.

To prove the superiority of the proposed RACE server con-
solidation strategy, a simulation based analysis has been done by
using light, normal and heavy application workloads. The results of
the simulation have compared with results of two other server
consolidation strategies: pMapper (Verma et al., 2008) and PADD
(Lim et al.,, 2009). With the increase of incoming workload, the
occurrence of SLA violations tend to increase due to the fluctuation
in the workload and resource shortage. In the proposed method,
the value of utility function has been assessed before accom-
modating any request and performing VM consolidation. If the
value of utility function is positive, only then consolidation will be
considered valid. Because of the common utility function has
unified SLA violation, energy costs and reliability, the proposed
strategy has outperformed all other methods. This kind of con-
straint is not available for other consolidation strategies and they
tend to accept all the requests which lead to more SLA violations
and energy saved by them has outweighed because of penalties of
SLA violations.

Lin et al. (2013) have studied the job completion reliability (JCR)
and job energy consumption (JEC) for general map reduce infra-
structure (GMI). The probabilistic models for worst case and best
case have been formulated to represent the reliability of slave nodes
performing map and reduce tasks and master nodes running job
tracker and name node instances. The best case corresponds to the
execution of job without any interruption and worst case corres-
ponds to the execution of job on every cold-standby node (re-
dundant nodes) at the slave end. Along with the formulation of
reliability of master and slave nodes to finish a job, corresponding
energy consumption has also been formulated as the function of
time taken to finish. All the nodes at master end and at slave end
are homogeneous and occurrence of failures has been assumed
following Poisson distribution. The influence of different number of
cold-standby slave nodes (varies from 1 to 4 in this study) has been
evaluated on job completion reliability and job energy consump-
tion. 10 jobs with different lengths of map task execution time are
considered and each of them are divided into 4096 map tasks and
1 reduce task. It has been seen that increasing the number of cold-
standby nodes from 1 to 2 increases the JCR but further increase
does not make any difference because of the absence of any re-
dundancy measure at the master end. This means that increasing
the number of backup resources does not increase reliability as long
as no measure has been taken at the master node end. For the best
case scenario, energy consumption is less and linear with respect to
map task execution time and independent from the number of cold-
standby nodes such that energy consumption remains same for all
the number of backup nodes. For the worst case, energy con-
sumption is linear with respect to map-task execution time but
varies according to the number of cold-standby nodes. When the
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best case occurs, increase in the number of cold standby nodes does
not affect JEC of GMI.

After the analysis, it has been concluded that General Map-
reduce Infrastructure (GMI) is energy efficient but for long ex-
ecuting jobs, it is not reliable because of the absence of re-
dundancy measure at the master end. We propose to improve the
reliability of the system by using redundancy measures at the
master end of the system.

6.2. New challenges and future research directions

Many solutions have been developed either to increase the
reliability of the system (Table 1) or decrease the energy con-
sumption of the system (Table 2). Some of the work done jointly in
the field of reliability and energy efficiency of CCS is highlighted in
the Table 3. To the best of our knowledge, this list includes all the
research to make the CCS both reliable and energy efficient at the
same time. Finding a solution to achieve both objectives at the
same time poses new fundamental challenges, which are dis-
cussed in the following sections.

Impact of Energy Efficiency Techniques on Reliability: though a lot
of work has done to optimize the energy management (Table 2) by
exploiting power regulation techniques in order to make CCS en-
ergy efficient but reliability of cloud systems has left an open
challenge to look at along with energy efficiency of the systems. To
make the CCS energy efficient, all the energy-aware resource
management techniques are usually based on the manipulation of
underlying resources which can be done either by running the
resources at low-scaling mode or by turning them off. Though
these methods have proved very efficient from the perspective of
energy management, they have adverse effect on the reliability of
the systems. Switching the resources between low scaling modes
and high scaling modes using frequency and voltage scaling
techniques (DVES) causes an increase in the response time and
decrease in the overall throughput of the system. This can result in
a service delay and be considered as a service failure due to SLA
violations. On the other hand, turning servers on/off or putting
resources in sleep mode more frequently makes them more failure
prone than running the resources all the time. Just as the lifetime
of a car brake-pads decrease with each slowdown, the reliability of
server components, specifically disk drives, also decrease with
each power modulation. Thats why many disk manufacturers
limited the start/stop power cycles of disk drives to 50,000 for
their entire lifetime and also propose to keep the power cycles
limited to 10 times/day to keep the overall system reliability high
(Zhu and Zhou, 2005). So the optimal solution is to make the CCS
energy efficient and reliable at the same time and thus help to
make the paradigm stable and acceptable.

Impact of Failures on Energy Consumption: many solutions are
provided in the literature (Table 3) to evaluate the impact of uti-
lization, energy consumption etc on the occurrence of failures but
how much energy consumption of the system will be effected with
the occurrence of failures remains unclear. It is necessary to use
optimized fault tolerance methods to reduce the occurrence of
failures in CCS. But to make the current fault tolerance methods
more optimized in terms of energy consumption, it is important to
study the relation between the failures and energy consumption.
Defining this relationship will help to simultaneously increase the
reliability and energy efficiency of CCS.

Multi-Objective Resource Provisioning Methods and Techniques:
most existing research has on either the reliability or the energy
efficiency aspect of cloud task scheduling (Table 3). The resource
or task scheduling can be formulated by using different optimi-
zation problems such as bin packing problem in which the avail-
able resources are assigned to the incoming tasks according to
certain conditions. The resources provisioning is like a bin-making

problem such that adequate number of resources need be reserved
first and, after the reservation, bin-packing solutions can be used
to do the optimization. In the case of under-provisioning of re-
sources, the scheduler will not get enough resources to schedule
the tasks which can lead to the service failure. On the other hand,
in the case of overprovisioning, reserved resources will remain
underutilized which will increase the cost of service in terms of
energy consumption and other operation expenses. Rather than
considering the resource and task mapping problem as a single-
layer problem, it is better to consider it as a two-layer problem
consisting of resource provisioning and resource scheduling. For
each layer, different solutions need to be proposed to make the
CCS both reliable and energy efficient.

Prediction Algorithms to Estimate both Fault Occurrence and Energy
Consumption: if the occurrence of the failure or fault in the system is
predictable, then important measures can be taken before the oc-
currence such that the checkpoints can be saved with less overhead,
running virtual machines or tasks can be migrated to more reliable
physical machines. By doing this, we can save unnecessary wastage
of power/energy that will be required to restart all the running
process that were interrupted during the failure. The prediction will
help to adopt the reactive and proactive failure management and
energy management mechanisms wisely. Suppose the occurrence of
failure can be known in advance, then the checkpointing or logging
of the current state of the system will start just before the occur-
rence of the failure. Therefore, we can reduce overhead occurred
due to the checkpoints or logs of the running system. If the over-
head will be reduced then less number of backup resources will be
required and energy consumption of the system will be reduced
without compromising the reliability of the system.

Federated Clouds and their Standardization: interconnected
clouds or Federated clouds is the collection of clouds analogus to
the Internet (collection of networks). Giacobbe et al. (2015) have
defined the cloud federation as an ecosystem of different cloud
providers that are interconnected in a cooperative decentralized
computing environment. With the inter-cloud computing the re-
liability and energy efficiency of the cloud services will be in-
creased by making them more dynamic and scalable. Being in the
early stage, cloud computing is lacking in standardization. As the
reference models and standards are available for other deploy-
ments such as the Internet, cloud deployment has not yet have any
confirmable reference models and standards. As a result, most of
the cloud providers have designed their own proprietary stan-
dards and interfaces. To avail the services of such clouds, appli-
cations need to get tailored according to the specific standards and
interfaces. This gives rise to another problem called vendor lock-in
Toosi et al. (2014). The existence of the reference models (TCP/IP
model in case of Internet) and standards for cloud computing
paradigm will help the developers to implement the generic so-
lutions following the similar attributes. The standardization will
also help to regulate the energy consumption of cloud infra-
structure by making the migration of running virtual machines
easy from one cloud vendor to another, which is yet only been
done between the resources of same or different sites of the same
cloud provider. With the proper set of standards or rules, the
concept of inter-cloud computing will be realized more efficiently,
which will make the cloud technology more reliable, affordable
and eco-friendly. It is observed that the majority of time, the re-
sources of data centers providing cloud services remains under-
utilized but still the providers keep extending and upgrading their
infrastructure to house the future needs for example Microsoft is
adding 10,000 servers per month to its data centers.'® With the

8 http://www.datacenterknowledge.com/archives/2008/08/14/218000-ser
vers-in-microsoft-data-centers/
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proper realization of inter-cloud computing architectures, this
over spending can be avoided by sharing the resources between
the different cloud providers to serve the unexpected service re-
quests in a reliable manner without violating the service level
agreements.

Real Cloud Failure Traces: although at the physical level cloud
computing services are deployed at the infrastructure of the
clusters or other distributed computing systems, the working
paradigm for the CCS is different from the rest of the distributed
computing architectures. In most of the research literature, the
empirical or statistical analysis about failures and energy con-
sumption of the CCS has been done by using traces or log files of
grids or clusters mounted within cloud computing services. For
example, Garraghan et al. (2014) have done an empirical analysis
to evaluate the effect of failures on the energy wastage of the cloud
systems. The whole work was done by using Google traces gen-
erated during the occurrence of failures in Googles clusters. The
occurrence of the failures was deduced according to the behavior
or changes in the log data because no information has been shared
regarding the occurrence of these failures. Although, there are
different types of failure traces present such as Failure Trace Ar-
chive (Kondo et al., 2010), Google cluster traces, Computer Failure
Data Repository (CFDR)'® for different types of distributed com-
puting architectures such as grids, clusters, volunteer computers
etc, there are no failure traces present for a real cloud. A big gap
exists in the analytical studies of cloud behavior done by using
non-cloud based traces or logs that specifically trace failures and
energy consumption. To make the research more attractive, the
cloud computing service providers must disclose the real cloud
traces for the occurred failures and energy consumption and must
build public repositories or help the researchers to do so.

6.3. Reliable and energy-efficient cloud computing architecture: a
conceptual model

To resolve aforementioned issues, there is a need for optimized
energy-aware and failure-aware resource provisioning policies,
which is the focus of our research. To realize these policies, a cloud
computing architecture is required. Fig. 12 depicts an extended
version of a layered view of our tentative cloud architecture that
was proposed earlier (Sharma et al., 2015) which incorporates
reliability-aware and energy-aware resource provisioning policies.

Cloud Service Users/Brokers: cloud service users or brokers
providing services to other users reside in this layer. Users submit
requests and attains services according to the terms and condi-
tions of service level agreements (SLA).

Cloud Management Center (CMC): this layer is the heart of
whole architecture on which our research is focused. All the
management decisions about providing the services will be made
here. This layer includes Business, Provisioning and Monitoring
components.

1. Business: this part is used to manage the expenses of a CCS.
Challenges like billing of services, cost of services, cost of
ownership etc. will be handled by the solutions provided by this
module.

2. Monitoring: the monitoring section will help to make decisions
for other layers by providing them feedback. The main job of
this section is to monitor the activity of the under-lying infra-
structure so as to ensure uninterruptable services. The solutions
provided are also responsible to monitor the activities of users
such as, their requirements and operations.

3. Reliable and energy-efficient resource provisioning: this

19 https://www.usenix.org/cfdr

module is responsible for the cloud resource provisioning to

customers in a reliability-aware and energy-aware manner. All

the decisions regarding the optimization of cloud services will

be taken here. This module will provide solutions such as, en-

ergy management, virtual machine management, SLA manage-

ment and fault management. The main focus of our research

deals with reliability-aware and energy-aware resource provi-

sioning policy that we will incorporate in this layer.

® SIA Management: includes SLA contract definition and utili-
zation of SLA schemas with associated QoS parameters, SLA
monitoring and reliability and energy efficiency policies.

® Fault Management: keeps track of systems and other faults
and uses this information to statistically compute future po-
tential failures, and the mechanisms and processes to miti-
gate the likelihood of such errors and their impact.

® Energy Management: includes the energy management me-
chanisms that will be responsible to regulate the energy
consumption of the under lying hardware resources by low-
ering the operating frequency or turning them off according
to the current utilization or workload.

® VM Management: monitors the availability of VMs and pro-
vides migration/replication services on behalf of the cloud
provider on the basis of our proposed common cost function
for reliability and energy efficiency. The value of the common
cost function will be calculated using the outputs of the en-
ergy management module and fault management module. A
key part of the work to be undertaken is to support live mi-
gration of VMs from active physical machines to passive
physical machines and to preemptively deal with failures
seamlessly and transparently from the cloud customer per-
spective, and so to provide undisrupted cloud services.

4. Virtual Layer: on the basis of procedures and policies im-
plemented at Cloud Management Center layer, virtual machines
providing services to users will run on the top of physical ar-
chitecture. Virtual machine migration or consolidation to ensure
fault tolerance and energy efficiency will take place at this layer
according to the results of resource or service management al-
gorithms or policies executing at cloud management center
(upper layer),

5. Physical Infrastructure: this layer deals with actual hardware
infrastructure upon which the cloud computing services rely. It
consists of different types of physical machines such that low
utilized passive physical machines and active physical machines
that are providing services to the users.

7. Conclusion

Although cloud computing platforms are widely used today,
there are still plenty of research gaps to be addressed. Due to the
large infrastructure of clouds, energy efficiency, reliability and
scalability are among the foremost concerns in cloud computing.
In this paper, we have explored various types of failures that drive
researchers to design the mechanisms to make the CCS highly
reliable. This paper has surveyed and critiqued a variety of
methods aimed at increasing the reliability of CCS. The increase in
the size and design complexity of clouds, is resulting in huge en-
ergy consumption and enormous carbon footprints. This paper
also presented a comprehensive survey of all the energy man-
agement techniques used in CCS. We observed that the adoption of
mechanisms to provide reliability in cloud computing services has
impacted the energy consumption of the system. Adding back-up
resources, running replicated systems, storing logs etc. provide
strong fault tolerance but also increase the energy consumption.
There is a critical trade-off between service reliability and energy
consumption that urgently needs to be investigated. We have
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identified the need for a reliability-aware and an energy-aware
resource provisioning policy to improve the availability of cloud
services whilst simultaneously reducing its energy consumption.
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